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Abstract

We investigate two models interacting agent systems: the first is motivated by the
flocking and swarming behaviors in biological systems, while the second models opinion
formation in social networks. In each setting, we define natural notions of convergence
(to a “flock" and to a “consensus”, respectively), and study the convergence properties
of each in the limit as t ! 1. Specifically, we provide sufficient conditions for the
convergence of both of the models, and conduct numerical experiments to study the
resulting solutions.
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1 Introduction

In this thesis, we explore two different models of interaction between N agents. The first
is an extension of the well-studied Cucker-Smale model of flocking and swarming, in which
agents interact according to three forces: attraction, repulsion, and alignment of velocity.
Because of these three types of interaction, we call the model the ‘three-zone model’ of
flocking. In the context of this model, we define a natural notion of convergence to a
‘flock’, and derive a sufficient condition for the dynamics to converge.

The second model studied in this thesis models the propagation of opinions or beliefs in
a social network. We model each agent’s opinion as a scalar s 2 R, and define a consensus
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as a state in which all agents converge to a common opinion. In this model, the extent to
which agents influence one another is determined by their configuration on a graph G. We
show that a sufficient condition can be derived guaranteeing convergence of the system to
consensus using only properties of the graph G.

Finally, we conduct numerical investigations for each model, and suggest potential future
work.

2 A Model of Flocking in Three Zones

2.1 Background

Flocking behavior is an intriguing phenomenon observed in nature. It remains an open ques-
tion how birds or fish are able to organize on several scales to form a coherent motion.
Modeling has proved to be crucial in highlighting how such complex behaviors can be gen-
erated from simple interaction rules. Among the different models proposed, the three-zone
model has been particularly popular in biology ([4],[8],[10]). In the three-zone model, agents
representing birds or fish engage in three types of interactions: repulsion, alignment, and
attraction, depending on whether their neighbor is at a short, intermediate, or long distance,
respectively. The goal of this section is to provide sufficient conditions for the convergence
of such a system towards a flock, which occurs when all agents approach a common velocity.

Analytical studies of flocking dynamics have mainly been inspired by the seminal work
of Cucker and Smale ([5],[6]). In their research, they studied a simplified version of the
so-called Vicsek model where only the alignment force between agents is considered. They
proved rigorously the convergence of the dynamics to a flock, given the condition that the
alignment force is sufficiently strong. This work has been followed by many generalizations
and improvements ([9],[11]).

One key element to prove the convergence of the Cucker-Smale model to a flock is
the decay of the kinetic energy of the system due to the alignment rule, which acts as
a source of friction. In the present manuscript, the dynamics combine both attraction-
repulsion and alignment, therefore we have to define the energy of the system as the sum of
its kinetic energy and potential energy. The attraction-repulsion term does not modify the
total energy since it obeys Hamiltonian dynamics, and hence conserves energy. However, the
alignment term causes the kinetic energy and consequently the total energy of the system
to decay with respect to time. As a result, if the attraction-repulsion force is such that the
particle configuration remains spatially bounded, the influence of the alignment term will
guarantee the system converges to a flock. Notice that we cannot draw any conclusions
about the spatial organization of the flock, but many analytic and numerical studies have
been conducted on this problem.

So far, the sufficient condition for flocking requires that the attraction term is given by a
confinement potential. However, this condition can be weakened by incorporating the effect
of the alignment in the non-spatial dispersion of the agents. Here, the effects of attraction
and alignment are treated separately. Using commutator techniques, it might be possible to
improve the sufficient condition for flocking and/or to find a joint condition on the strength
of attraction and alignment at large distances. Other perspectives will be to extend the
proof for other types of interactions, such as non-symmetric interactions ([7],[9]), or using
the so-called topological distance ([2],[3]).

The section is organized as followed: in section 2.2, we introduce the three-zone model
for agent-based dynamics. We prove the main result by finding a sufficient condition for the
emergence of a flock in section 2.3 and give several numerical illustrations in section 2.4.

2



Figure 1: Left: Illustration of the three-zone model. The model includes three types of be-
havior: attraction, alignment and repulsion. Right: attraction and repulsions are represented
through the functionV , alignment is described via �.

2.2 Three zone model

We consider the three-zone model, which describes moving according to three rules of
interaction: repulsion (at a short distance), alignment, and attraction (at long distance). A
schematic representation of the model is given in figure 1. Each agent i is represented by a
vector position xi and a velocity vi both belonging to Rd (with d = 2 or 3). The evolution
of the N agents is governed by the following system:

ẋi = vi (1)

v̇i =
1

N

NX

j=1

�i j(vj � vi)�
1

N

X

j 6=i
rxiV (|xj � xi |) (2)

Here, �i j = �(|xj � xi |) represents the strength of the alignment between agents i and j .
We suppose that the function � is strictly positive. Similarly, rxiV (|xj � xi |) represents the
attraction or repulsion of agent j on i . Indeed, developing the gradient gives:

�rxiV (|xj � xi |) = V
0(|xj � xi |)

xj � xi
|xj � xi |

.

Thus, agent i is attracted to agent j if V 0 > 0 and repulsed if V 0 < 0. In figure 1, we
illustrate two possible choices for � and V .

2.3 Convergence to a flock

The goal of this section is to prove conditions guaranteeing that the three-zone model (1)(2)
converges to a flock.

Definition 2.1. We say that a configuration {xi , vi}i converges to a flock if the following
are satisfied:

1. There exists v1 such that vi ! v1 as t !1 for all i = 1, ..., N.

2. There exists M such that |xj � xi |  M for all i , j = 1, ..., N and for all t � 0.

In other words, in order to converge to a flock, agents should converge to a common
velocity v1 and the distance between the agents should remain uniformly bounded in time.
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The key quantity for studying the emergence of a flock is the energy function, defined
as

E({xi , vi}i) =
1

2N

NX

i=1

|vi |2 +
1

2N2

NX

i 6=j
V (|xj � xi |). (3)

We can interpret this value as the sum of the kinetic and potential energy of the system.
By itself, the attraction repulsion term (1)-(2) describes a Hamiltonian system and

therefore preserves the total energy E. However, the alignment term causes the total energy
to decay with time. That is, it plays the role of a ‘friction term’, making the system
dissipative. More precisely, we can estimate the decay rate of the energy E.

Lemma 2.1. Let {xi , vi}i be the solution of the N-agent system (1)(2). Then the energy
E (3) satisfies:

d

dt
E({xi , vi}i) = �

1

2N2

NX

i ,j=1

�i j |vj � vi |2. (4)

Since � is a positive function, the energy E is decaying along the solution trajectory.

Proof. Taking the derivative in time of the energy leads to:

d

dt
E({xi , vi}i) =

1

N

NX

i=1

v̇i · vi +
1

2N2

X

i 6=j
rxiV (|xj � xi |) · (vj � vi)

=
1

N2

NX

i=1

X

j 6=i

�
rxiV (|xj � xi |) · vi + �i j(vj � vi) · vi

�

+
1

2N2

X

i 6=j
rxiV (|xj � xi |) · (vj � vi).

By argument of symmetry, we find
X

i 6=j
rxiV (|xj � xi |) · vi =

X

i 6=j
V
0(|xj � xi |)

xj � xi
|xj � xi |

· vi

= �
X

i 6=j
V
0(|xj � xi |)

xj � xi
|xj � xi |

· vj

=
1

2

X

i 6=j
V
0(|xj � xi |)

xj � xi
|xj � xi |

· (vi � vj).

Therefore we can simplify:

d

dt
E({xi , vi}i) =

1

N2

X

i 6=j
�i j(vj � vi) · vi

And so using the symmetry �i j = �j i we conclude

d

dt
E =

1

2N2

NX

i ,j=1

�i j(vj � vi) · (vi � vj) = �
1

2N2

NX

i ,j=1

�i j |vj � vi |2.

Since the energy E is decaying, we deduce that the potential energy is bounded uniformly.
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Lemma 2.2. Take {xi , vi}i to be a solution of the three-zone model (1)(2). There exists
C such that for any time t � 0 and i , j :

X

i 6=j
V (|xj(t)� xi(t)|)  C. (5)

Proof. Take C0 = E({xi(0), vi(0)}i). Since E is decaying along the solution trajectory, we
deduce that for all t:

1

2N

NX

i=1

|vi(t)|2 +
1

2N2

X

i 6=j
V (|xj(t)� xi(t)|)  C0

Since the kinetic energy 12
PN
i=1 |vi |2 is always positive, we deduce:

X

i 6=j
V (|xj(t) = xi(t)|)  2C0N2.

Thus taking C = 2C0N2 yields the results.

Taking advantage of lemma 2.2, we suppose that V is a confinement potential ([7]):

V (r)
r!1���! +1 (6)

Under this assumption, we can prove the second condition of convergence to a flock, namely
that the distances between agents remains bounded.

Lemma 2.3. Suppose that V satisfies (6). Then there exists rM such that:

|xj(t)� xi(t)|  rM for any i,j and t � 0. (7)

Proof. From lemma 2.2, we know that the potential energy is bounded, in particular

V (|xj(t)� xi(t)|)  C

Since V satisfies (6), we deduce that there exists rM such that V (r) > C whenever r > rM .
Since V (|xj(t) � xi(t)|) is bounded by C, we conclude that |xj(t) � xi(t)| is bounded by
rM .

Remark 2.4. Similarly, if we suppose that V diverges at r = 0, then there exists a minimal
distance rm between agents with

|xj(t)� xi(t)| � rm.

We can now conclude by deriving sufficient conditions to guarantee flocking behavior for
the three-zone model.

Theorem 2.5. Suppose V satisfies (6) and � is strictly positive. Then for any intial condition
{xi(0), vi(0)}i the three-zone model converges to a flock.

Proof. Using lemma 2.3, we know that the distance between the agents remains bounded,
with |xj(t)� xi(t)|  rM . Since rM is finite, we can take the minimum distance of � on this
interval:

m := min
s2[0,rM ]

�(s).
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Figure 2: Attraction-repulsion V and alignment used for the simulations. In both cases, V
diverges at infinity (i.e. satisfies (6))

Since � is strictly positive, we deduce that m > 0. Therefore,

�i j = �(|xj(t)� xi(t)|) � m > 0.

Since the energy E is decaying and bounded from below we deduce that d
dtE

t!1���! 0 (as
d
dtE is uniformly continuous). Therefore using lemma 2.1, we have

�i j |vj � vi |2
t!1���! 0.

Since �i j � m > 0, we conclude that |vj � vi |
t!1���! 0.

Moreover, the mean velocity v = 1
N

P
i vi is preserved by the dynamics, by symmetry,

thus

vi(t)
t!1���! v for all i

which concludes the proof.

2.4 Numerical investigation

To illustrate theorem 2.5, we perform numerical experiments for various choices of attraction-
repulsion potentials. While theorem 2.5 guarantees that the velocities of the agents will
converge to a single value, namely the mean initial value, the result does not say anything
about the spatial configuration of the agents. That is, it is an open questions what shape
the flock will converge to. Several previous works have studied the stability of particular
equilibrium solutions in similar dynamical systems, and several patterns have been observed,
some of which can be studied in our context as well. In particular, we will attempt to
understand the spatial configuration of agents as N !1.

To illustrate theorem 2.5, we consider the following two potential functions:

V (r) = r(ln r � 1), �(r) =
1

1 + r2
. (8)

Clearly V (r) satisfies the confinement potential condition (6) (i.e. V (r) r!1���! +1) and �
is strictly positive. Thus theorem 2.5 guarantees that with these potentials, the three-zone
model will converge to a flock. Figure 2 (left) illustrates these two potentials.

We use as initial conditions a uniform distribution of agents on a square of size
p
N.

Their velocity is taken form a normal distribution. In figure 3, we plot the distribution of
agents after t = 200 time units for four different group sizes: N = 20, 50, 100 and 1000.
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For each group size, the agents regroup on a disc of radius close to 2 space units and the
distribution is uniform on the disc. As the number of agents N increases, the radius remains
constant and therefore the average distance between agents decreases. This type of pattern
has been called catastrophic, since the density will eventually become singular as N ! 1,
and thus there is no thermodynamic limit. In other words, the repulsion is not strong enough
to push back nearby agents.

In our second illustration, we reduce even further the repulsion force among agents using
the following potential (see figure 2 (right)):

V (r) = r2 ln r, �(r) =
1

1 + r2
(9)

There are now two possible equilibrium points for attraction/repulsion at the distances r = 1
and r = 0. In figure 4, we plot the distribution of agents at time t = 100 for two group
sizes: N = 50 and N = 200. We observe that the agents are now aggregating on a circle.

The evolution of the total energy E (3) is given for all cases in figure 5. As predicted by
lemma 2.1, the energy is always strictly decaying. Moreover, we observe oscillatory behavior
between fast and slow decay. The reason for this behavior is the repeated contraction-
expansion of the spatial configuration as the agents approach equilibrium. The energy is
decaying faster when agents are closer since the alignment function � is a decaying function.
These types of oscillation are also observed for the convergence of the Boltzmann equation
towards global equilibrium.

2.5 Further work

In this thesis, we studied the three-zone model in the context of finitely many agents N, and
derived a sufficient condition for the dynamics to converge to a flock. However, one can
extend this work to the so-called kinetic equation associated with the particular dynamics that
arises as one takes the limit N !1. This yields an analogous partial differential equation,
explicitly describing the spatial distribution of agents. While studying this equation is outside
of the scope of this thesis, Motsch et. al. have derived analogous results to this work in
this limiting case.

3 A Model of Consensus Formation on Graphs

3.1 Background

In this section, we review a deterministic model of consensus formation studied by Weber
et. al. ([12]) We present the major definitions and results, though we omit proofs and inter-
mediate lemmas for the sake of brevity. The rest of this thesis will then study a stochastic
extension of this model, and as we will see, several analogous results can be obtained in this
case.

Weber et. al. model opinion formation as agents interacting on a graph G, with each
agent i representing a vertex and having opinion si(t) 2 R at time t. The deterministic
consensus model is then defined as:

Definition 3.1. Given a collection of N agents, let si 2 R represent the opinion of the ith
agent. The consensus model is defined by the dynamics:

s
0
i =

X

j 6=i
ai j(sj � si) where ai j � 0 (10)

In vector notation this can be written

ṡ = �LT s, (11)
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Figure 3: Simulation of the three-zone model (1)-(2) with potential V and alignment function
� given by (8). Agents regroup on a disc of size R ⇡ 1.8 for any group sizes. Parameters:
�t = .05, total time T = 100.

Figure 4: Simulation of the three-zone model (1)-(2) with potential V and alignment function
� given by (9). Agents regroup on a circle of size R ⇡ .5. Parameters: �t = .05, total time
T = 100.
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Figure 5: Evolution of the energy E for the solutions depicted in figures 3 and 4. The energy
is always decaying but also oscillates between fast and slow decays. These oscillations can
be explained by the successive contraction-expansion of the spatial configuration. The decay
of the energy is faster when the agents are closer to each other.

where
s = (s1, ..., sN)

T
,

and L = (li j)n⇥n where

li j =

8
<

:

P
i 6=j
ai j if i = j

�ai j if i 6= j.
(12)

The properties of the graph G are captured by the Laplacian matrix L, where the entries
li j describe the extent to which agent i is connected to agent j . If li j = 0, then we say that
there is no edge from agent i to agent j . The notion of consensus is then defined naturally
as follows.

Definition 3.2. We say that the consensus model converges to a consensus if there exists
↵ 2 R such that:

lim
t!1

s(t) = ↵1, (13)

where 1 = (1, 1, .., 1)T . That is, consensus is reached whenever the opinions converge to a
single value.

There are several important properties of the graph G, manifest through the Laplacian L,
that we will see will be important to understand the convergence behavior of the consensus
model. We summarize these in the following definition.

Definition 3.3. Let G be a graph with L = (li j)i j the associated Laplacian. G is undirected
if li j = lj i for all i , j , otherwise G is directed. An undirected graph G is connected if there
is a path between any two agents i and j . A directed graph G is weakly connected if
when considering it as an undirected graph, it is connected. A directed graph is strongly
connected if for any agents i and j , there is a directed path of edges from i to j .

For any directed graph G, it is possible to partition G into strongly connected com-
ponents, where each component is itself a strongly connected subgraph of G. A strongly
connected component G1 ✓ G is isolated if there is no edge from G \G1 into G1. When G
is an undirected graph, there is a convenient representation for the connectivity of G based
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on the second eigenvalue �2 of L; namely, G is connected if and only if �2 > 0. �2 is often
called the Fiedler number of the graph G.

The first results we present from Weber et. al. are for the case of strongly connected
networks, in which case we get the following theorem:

Theorem 3.1. If G is strongly connected, then the consensus model converges to a con-
sensus. Moreover, if G is undirected (that is, L is symmetric), then we have

s(t)
t!1���! s1 (14)

where s = 1
N

PN
1 si(0). Also, in this case we have for all i = 1, ..., N,

|si(t)� s|  Ce��2t (15)

where �2 is the Fiedler number, or the second eigenvalue of the Laplacian L.

Hence we see that in the strongly connected case we are guaranteed consensus, and
moreover guaranteed to converge to the initial average whenever the graph is undirected at
a rate governed by the Fiedler number �2.

We now present the main result in the weakly connected case.

Theorem 3.2. The consensus model converges for any graph G, though not necessarily to
a consensus; that is, there is a vector s1 2 RN such that

s(t)
t!1���! s1. (16)

If the graph G has at most one isolated, strongly connected component, then the consensus
model converges to a consensus.

Thus we see that while the consensus model is guaranteed to converge to some vector,
convergence to consensus is only guaranteed when there is at most one isolated strongly
connected component of the graph G. We will see that this is also the condition when we
consider the stochastic extension of this model in the following sections. The major results
of this section are summarized in figure 6.

3.2 A stochastic approach to consensus formation

We now turn our attention to a stochastic “jump" model of consensus formation on graphs,
analogous to the deterministic model considered above, which shares many similarities of the
“voter model" studied by Aldous ([1]). In this case, instead of modeling opinion dynamics in
a deterministic manner, we model interactions between agents as arrival times of a Poisson
process. We use this description to derive a continuous time Markov chain describing the
dynamics of consensus formation, which can be decomposed into discrete steps by deriving
the so-called embedded Markov chain of the system. Under this set up, we derive similar
conditions on the graph of agents that guarantees convergence to a consensus, while noting
certain results that cannot be transferred from the deterministic to the stochastic setting.

Moreover, when we make the further assumption that the underlying graph is undirected,
we are able to obtain a rate of convergence that is naturally contrasted with the deterministic
case considered above.
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Figure 6: Summary of the results from theorems 3.1 and 3.2.
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3.3 Poisson processes, interactions on graphs and the jump model

We consider a N agents, which we will denote V = {v1, v2, ..., vN}, thought of as vertices
interacting on a graph, which we model as independent Poisson processes. Each agent vi has
opinion si(t) at time t � 0, with initial opinions si(0), i = 1, ..., N. We model interactions
in continuous time as a sequence of inter-arrival times: let T (i)k be the time of the k th

interaction for agent vi . Under the Poisson assumption, interactions satisfy the memoryless
property, which will imply that (T (i)k )k�1 are independent observations from an exponential
distribution with rate parameter �i .

For each interaction k , vi interacts with exactly one other agent; when agent vi interacts
with vj , agent vi ’s opinion takes on, or “jumps" to, the value of vj ’s opinion. To denote this
interaction, we define the jump function  i j to describe vi interacting with vj :

 i j(s) = s
0 where s 0k =

(
sk if k 6= i
sj if k = i

With this is mind, we model the amount of influence agent vi has on agent vj as

pi j = P (vi interacts with vj at time t|T (i)k = t),

which we assume is the same for all t. Then we have that vi interacts with vj with rate
ai j = pi j�i . We can interpret the matrix P = (pi j)i ,j as the edges in a weighted graph: the
larger pi j , the more connected vi is to vj , and hence the more the opinion of vj influences
that of vi . If P is symmetric, then we say that the graph G = (V, P ) is undirected, otherwise
it is directed. If pi j = 0, then we say that there is no edge from vi to vj .

With these definitions, we can define analogous notions of connectedness to the deter-
ministic case considered earlier.

Our primary interest is in the time evolution of the aggregate opinions

s(t) = (s1(t), s2(t), ..., sN(t)).

We will see in this section that the random variable s(t) defines a continuous time Markov
chain on the state space S = {(s1, s2, ..., sN) : si 2 {s1(0), s2(0), ..., sN(0)} for all i}. First,
we recall the superposition property of Poisson processes.

Fact. [Superposition of Poisson processes] If we have N Poisson processes with rates �i ,
we can superposition them to get a Poisson process with rate ⌫ =

P
i �i . We call the

superpositioned Poisson process (T ⌫n )n�1.

The Poisson process (T ⌫n )n naturally captures the times that any interaction occurs. Indeed,
we can use this process to describe the rate that s 2 S transitions to any s0 2 S. We will
then show that this constitutes a continuous time Markov process, which we can analyze
using standard techniques.

Lemma 3.3 (Transition rates of s(t)). Let s, s0 2 S. Then at any time t, the transition
rates satisfy

ass0 =

(
0 if s0 differs from s in more than one coordinate
pi j�i otherwise

where i is the coordinate for which s0 differs from s and vj is the agent that vi interacts with.
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Proof. Note that for any states s, s0 2 S,

pss0 = P (s transitions to s0 at time t | t = T ⌫k , some k) > 0

if and only if s0 differs from s in at most one coordinate, otherwise pss0 = 0, in which case
ass0 = pss0⌫ = 0. Thus we need only consider s, s0 that differ in a single coordinate. Then
suppose that s0 differs from s in the i th coordinate. Then s 0i = sj , where sj is the j th

coordinate of s, for some j . Then by the thinning property,

P (vi interacts at time t | t = T ⌫k , some k) =
�i

⌫

Thus conditioning on this event, we have that

pss0 = P (vi ! vj at time t | vi interacts at time t)P (vi interacts at time t | t = T ⌫k , some k)

= pi j
�i

⌫

Furthermore, the rate at which this transition occurs is ass0 = pss0⌫ = pi j�i .

It is easy to see that s(t) satisfies the Markov property with transition rates (ass0)s,s02S,
since (T ⌫n )n are independent observations from an exponential distribution and the probabil-
ities pi j were assumed to be time independent.

Remark 3.4 (Embedded Markov chain). We can always recover the transition probabilities
from the rates given in lemma 3.3 via the identity pss0 =

ass0
⌫ . This induces a discrete time

Markov chain, called the embedded Markov chain that captures all the interactions that
occur, but without any information about time. For the continuous time Markov chain
s(t), we denote the associated embedded Markov chain s(n), and the transition probabilities
(pss0)s,s02S.

Definition 3.4 (Jump model). Given N agents, a sequence of Poisson processes (T (i)k )
N
i=1

with rates (�i)Ni=1 and jump probabilities P = (pi j)i ,j , we define the jump model to be the
induced continuous time Markov chain s(t). However, it will often be useful to use the
embedded Markov chain s(n), which we will also refer to as the jump model.

Note that for the jump model s(n), there are at most N2 terms in the matrix (ass0)s,s02S
that are nonzero: given that agent vi jumps at time n, one can interpret the distribution
over which agent vi interacts with as a distribution over actions  i j , where the jump  i j
occurs with probability pi j .

3.4 Convergence properties of the jump model

As we will see, many of the results of the deterministic consensus model also hold for the
jump model of opinion formation. In particular, we show that, like in the deterministic case,
the connectivity of the graph G = (V, P ) characterizes the convergence of the opinions s(t).
On the other hand, the stochastic nature of the jump model prevents certain results from
being transferred from the deterministic setting. We begin with a simple example of this,
which we will address in more detail later on.

Example 3.5 (Nonconvergence in the weakly connected case). Consider the following three-
agent setting: take V = {v1, v2, v3} with

P =

0

@
1 0 0
0 1 0
1/2 1/2 0

1

A

Then for any initial starting state s(0) = (s1(0), s2(0), s3(0)), with si(0) 6= sj(0) for i 6= j ,
the jump model will never converge.
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To analyze the convergence properties of the jump model s(n), we use the notions of
absorbing states and absorbing Markov chains.

Definition 3.5 (Absorbing states and absorbing Markov chain). Let s(n) be a Markov chain
on a state space S. A state s 2 S is called absorbing if pss = 1 – that is, the probability of
staying in s given that the chain has arrived in s is 1. The Markov chain s(n) is called an
absorbing Markov chain if for any starting state s(0) 2 S, the chain can reach an absorbing
state in finitely many transitions with positive probability. A Markov chain is absorbed if it
reaches an absorbing state.

Absorbing Markov chains behave nicely in the following sense.

Fact. Let s(n) be an absorbing Markov chain with finite state space S. Then s(n) is
absorbed with probability 1.

As example 3.5 illustrates, we are not guaranteed convergence of opinions in the general
weakly connected case. However, using the notion of absorbing states, we will see that the
same condition as in the deterministic case will guarantee convergence to consensus. We
first prove the following lemma.

Lemma 3.6. Let s(n) be the discrete-time jump model with transition probabilities R on
the state space S. Suppose that the graph G = (V, P ) is weakly connected with at most 1
isolated, strongly connected component. Then let s 2 S be any state that is not constant,
so that si 6= sj for some i , j . Then there is a finite path s1, ..., sM occurring with positive
probability so that s1 = s, and either sMj = si or sMi = sj .

Proof. First, assume that i and j are in the same strongly connected component. Then by
definition, there is a path i = i1, ..., iM = j from i to j that, given that vi jumps, occurs
in M steps with probability

QM�1
k=1 pi ik+1 > 0. Then set s1 = s and sk =  ik ik�1(s

k�1) for
k = 2, ...,M. Then by lemma 3.3 we have

psk sk+1 = pik ik+1
�ik

⌫
> 0

So that the probability of s1 transitioning to sM is

M�1Y

k=1

psk sk+1 > 0

Furthermore, since sM =  i iM (s
M�1) =  i j(s

M�1), we have that sMi = sj .
Now suppose that i and j are in different strongly connected components. Then by

assumption, at most one of i or j is in an isolated component. Without loss of generality,
assume i is in an isolated component. In this case there is a path from i to the strongly
connected component of j , and then a path to j itself. Hence we can proceed as in case 1,
and find a path i ! j that occurs in M steps with positive probability.
Thus we have the result.

We will define pi!j :=
QM�1
k=1 psk sk+1 > 0 as the probability of the finite path occurring

in the above proof.

Theorem 3.7. Let s(n) be the discrete time jump model on a graph G = (V, P ), with
initial opinions s(0) = (s1(0), ..., sN(0)). Suppose that G is weakly connected with at most
1 isolated, strongly connected component. Then (1) the only absorbing states of s(n)
are constant and (2) s(n) is an absorbing Markov chain, and therefore is absorbed with
probability 1. We conclude then that s(n) converges to a consensus with probability 1.

14



Proof. (1) Clearly constant states are absorbing, since if s 2 S is constant,  i j(s) = s for all
i , j . Now suppose that s 2 S is an absorbing state, but that s = (s1, ..., sN) is not constant.
Then there are i , j such that si 6= sj . Then by lemma 3.6 there is a path from s to s0 2 S
with s 0j = si occurring with probability greater than 0. Hence s cannot be an absorbing state,
and so the only absorbing states are constant.
(2) Let s(0) be any starting state. First, suppose that G is strongly connected. Then let
vi0 2 V . Then by lemma 3.6, for any vj 2 V , there is a finite path i1, ..., iMi0 j occurring

with positive probability pj!i0 so that s
Mi0 j
j = si0(0). Since this is true for all vj 2 V , s(0)

transitions to s⇤ where s⇤j = si0(0) for all j , in
P
j 6=i0Mi0j steps with probability

Q
j 6=i0 pj!i0 >

0.
Now suppose that G is not strongly connected, but has one strongly connected isolated

component. Then choose vi0 2 V not in an isolated component. Then again using lemma
3.6 we can find a from any vj 2 V to vi0 , so that as above s(0) transitions to s⇤, with
s
⇤
j = si0(0) in finitely many steps with positive probability.

Moreover, when the graph is undirected and connected, we have that the expected value
of the consensus opinions are equal to the initial average opinion. This is analogous to the
result given under the same conditions in the deterministic model.

Corollary 3.8. Suppose G is undirected and connected. Then with probability 1, the dy-
namics S(t) reach consensus opinion s⇤ at time T <1 and the consensus opinions satisfy
Es⇤ = 1

N

PN
1 S(0).

Proof. Let M(t) =
PN
1 Si(t). Then M(t) is a bounded martingale with at most N2 states,

and by theorem 3.7, M(t) converges to M1 = Ns⇤ for some consensus opinion s⇤. More-
over, since the state space of M(t) is finite, there exists a stopping time T that is finite
with probability 1. Then by the Optional Stopping Theorem,

ENs⇤ = EM1 = EM(T ) = EM(0).

Diving by N we get

Es⇤ =
1

N
EM(0) =

1

N

NX

1

Si(0)

3.5 Strong convergence in the undirected case

Theorem 3.7 characterizes precisely when the opinions s(n) converge to a consensus. How-
ever, by considering the embedded Markov chain rather than the continuous time model
s(t), we lose information about the rate of convergence of opinions. Recall that in the
deterministic case, we were able to show that the expected variance of the opinions

H(s(t)) =
1

N

NX

i=1

|si(t)� s̄(t)|2 =
1

2N2

X

i ,j

|si(t)� sj(t)|2

is decaying in time. If one assumes that the graph G = (V, P ) is undirected, we obtain an
analogous result for the continuous time jump model, with a rate that is naturally contrasted
to that obtained in the deterministic case.
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Lemma 3.9. Suppose that the graph G = (V, P ) is symmetric, so that in particular ai j = aj i
for all i , j . Then the variance H(s) decays according to

d

dt
E(H(s)) = �

1

N2
E[
X

i ,j

ai j |sj � si |2]

Proof. Conditioning on initial states, we observe from the Kolmogorov backward equations
that the change in the variance satisfies

d

dt
E[H(s)] =

X

i

X

j 6=i
E[ai j(H( i j(s))�H(s))]

Moreover, the variance after observing vi interacting with vj is

H( i j(s)) = H(s)�
2

2N2

NX

k=1

|sk � si |2 +
2

2N2

NX

k=1

|sj � sk |2 �
2

2N2
|sj � si |2

From which we deduce that

H( i j(s)) +H( j i(s)) = 2H(s)�
4

2N2
|sj � si |2

Furthermore, exploiting the symmetry ai j = aj i we get that

ai jH( i j(s)) + aj iH( j i(s)) = (ai j + aj i)
⇥
H(s)�

2

2N2
|sj � si |2

⇤

Thus
d

dt
E[H(s)] =

X

i

X

j 6=i
E[ai j(H( i j(s))�H(s))]

= E
⇥X

i<j

�
ai jH( i j(s)) + aj iH( j i(s))� (ai j + aj i)H(s)

�⇤

= �
1

N2
E
⇥X

i<j

(ai j + aj i)|sj � si |2
⇤
= �

1

N2
E
⇥X

i ,j

ai j |sj � si |2
⇤

In fact, when the graph is symmetric and strongly connected, we can obtain a similar
rate of convergence as in the deterministic case. To see this, we define the matrix analogous
to the Laplacian of the graph G = (V, P ):

L =

2

66664

�1 �a12 · · · �a1N
�a21 �2

. . .
...

...
. . . . . .

...
�aN1 · · · · · · �N

3

77775

Recall that the Laplacian is positive definite, and note that since �i =
P
j ai j , we have

for any vectors s

(Ls)i = aisi �
X

j 6=i
ai jsj =

NX

j=1

ai j(si � sj)

Then clearly u1 = (1/
p
N, 1/

p
N, ..., 1/

p
N) is an eigenvector with Lu1 = 0 = 0u1, so

that �1 = 0 is always an eigenvalue, and we have 0 = �1  �2  · · ·  �N , for all other
eigenvalues. As in the discussion in the deterministic case, the second eigenvalue, �2 � 0,
called the Fiedler number, will determine the rate of convergence of the variance.
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Lemma 3.10. Let G = (V, P ) be symmetric and connected. Let �2 be the second eigenvalue
of L. Then

X

i ,j

ai j |sj � si |2 � 2�2N ·H(s)

Proof. From the above, we note that

hLs, si =
NX

i=1

⇣ NX

j=1

ai j(si � sj)
⌘
si =

X

i j

ai j(si � sj)si

=
X

j i

aj i(sj � si)sj =
X

j i

ai j(sj � si)sj

where we use the fact that G is undirected, so aj i = ai j . Therefore we can write

hLs, si =
1

2

⇣X

i j

ai j(sj � si)sj +
X

i j

ai j(sj � si)si
⌘

=
1

2

X

i j

ai j(si � sj)(si � sj) =
1

2

X

i j

ai j |si � sj |2

Moreover, since L is symmetric, we can write D = diag(�1, ...,�N) and decompose L =
UDU

T with U the orthogonal matrix whose columns are the eigenvectors of L. Then for s
fixed, define m = 1

N

P
i si and set s̄ = (m,m, ...,m)T . Then

X

i j

|si � sj |2 =
X

i j

|si �m +m � sj |2

=
X

i j

|si �m|2 � 2(si �m)(sj �m) + |sj �m|2

= 2N
X

i j

|si �m|2 = 2Nhs� s̄, s� s̄i

= 2Nks� s̄k2

Now note that Ls̄ = 0, so

hL(s� s̄), s� s̄i = hLs, s� s̄i
= hLs, si � hLs, s̄i
= hLs, si � hs, LT s̄i
= hLs, si

Therefore

hLs, si = hL(s� s̄), s� s̄i
= hUDUT (s� s̄), s� s̄i
= hDUT (s� s̄), UT (s� s̄)i

Then setting w = UT (s� s̄), we have

hLs, si =
NX

i

�i |wi |2
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Notice that if we let u1 = (1/
p
N, 1/

p
N, ..., 1/

p
N)T be the first eigenvector, we have

w1 = hu1, s� s̄i = 0, from which we obtain

NX

i=1

�i |wi |2 =
NX

i=2

�i |wi |2 �
NX

i=2

�2|wi |2

= �2

NX

i=2

|wi |2 = �2kwk2 = �2ks� s̄k2

= �2

NX

i=1

|si �m|2 = �2NH(s)

Thus

X

i j

ai j |sj � si |2 = 2hLs, si � 2�2NH(s).

These lemmas give us the following theorem.

Theorem 3.11. Let G = (V, P ) be symmetric and connected. Then

E[H(s(t))]  e
�2�2t
N E[H(s(0))]

Where �2 > 0.

Proof. From the previous lemmas we observe that

d

dt
E[H(s(t))] = �

1

N2
E[
X

i j

ai j |sj � si |2]  �
2�2
N

E[H(s(0))]

Then applying Gronwall’s lemma we have,

E[H(s(t))]  e
�2�2t
N E[H(s(0))]

Where �2 > 0 because G is connected.

Thus we see that the variance of the opinions decays at rate 2�2
N , which is naturally

contrasted with the deterministic case, which we recall decayed with rate �2.

3.6 Numerical investigation

We perform numerical experiments to illustrate the major results of this section, namely the-
orems 3.7 and 3.10. We emphasize the importance of strongly connected components of the
underlying graphs, and give examples highlighting the differences between the deterministic
and stochastic setting.
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Figure 7: Illustration of the deterministic model with 2 strongly connected isolated compo-
nents. Nodes in the top left component are initialized with opinion -1, whereas nodes in the
bottom right component are initialized with opinion 1. Nodes in the center component are
initialized with opinion 0.

Figure 8: Illustration of the averaging effect from the deterministic consensus model with 2
strongly connected isolated components after t=1000 periods. By theorem 3.2, the model
converges, though not to a consensus, as there is more than one isolated strongly connected
component.
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Figure 9: Illustration of the initial setup of the stochastic model with si 2 {�1, 1}. The
nodes in the bottom right connected component are initialized to have opinion 1, whereas
the nodes in the top left connected component are initialized to have opinion -1. The nodes
in the center component are initialized randomly with opinion -1 or 1.

Figure 10: Stochastic consensus model after running the simulation for t=1000 periods. We
see that the isolated components remain unchanged, and that the center component fails to
reach consensus. Note that nodes more connected to the bottom right tend to have opinion
1, whereas nodes more connected to the top left component tend to have opinion -1.

20



0 20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0
H

(s
)

Decay of variance of opinions

10 simulations

50 simulations

500 simulations

exponential decay

Figure 11: Illustration of the decay of variance of opinions as given by theorem 3.10, with
variance averaged over 10, 50, and 500 simulations.

3.7 Further work

In this section, we briefly reviewed a deterministic model of consensus formation and pro-
posed a stochastic extension for which we proved sufficient conditions for convergence to
consensus. We noted throughout the importance of the connectivity of the underlying graph
that agents interact on. An interesting extension of this problem, in the deterministic set-
ting, is to ask, in some sense, the reverse question: given N agents with initial opinions
(s1(0), s2(0), ..., sN(0)) and a desired value s⇤ 2 R, can we choose the entries li j of L to
guarantee convergence to the particular value s⇤? This problem is fundamentally one of
control theory, and one considered briefly in Weber et. al. We believe this question is one
of both theoretical and practical interest in the context of social networks.

4 Conclusion

In this thesis, we considered two different models of interaction between N agents. In the
model of flocking in three zones, we considered a model of behavior involving three forces:
attraction, repulsion, and alignment, governed by the potential functions � and V . We
defined an energy function, which we showed decayed in time due to the ‘friction’ effect of
the alignment force. This allowed us to find a sufficient condition on the potentials � and
V that guarantee the system’s convergence to a flock.

In the model of consensus formation, we briefly reviewed a deterministic model of con-
sensus formation defined on a graph G. We then introduced a stochastic extension of this
model, and showed that the characteristics of the graph G, in particular its connectivity,
determine when the model converges to a consensus. We derived a sufficient condition
for the stochastic consensus model to converge to consensus, and in the case when G is
undirected, determined a rate of convergence related to the Fiedler number of the graph G.
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